
An Ordinal Data Method for the Classification with
Reject Option

Ricardo Sousa, Beatriz Mora, Jaime S. Cardoso
INESC Porto, Faculdade Engenharia, Universidade Porto

Campus da FEUP, Rua Dr. Roberto Frias, n. 378
4200-465 Porto, Portugal

{rsousa,bbarbero,jaime.cardoso}@inescporto.pt

Abstract—In this work we consider the problem of binary
classification where the classifier may abstain instead of clas-
sifying each observation, leaving the critical items for human
evaluation. This article motivates and presents a novel method
to learn the reject region on complex data. Observations are
replicated and then a single binary classifier determines the
decision plane. The proposed method is an extension of a method
available in the literature for the classification of ordinal data.
Our method is compared with standard techniques on synthetic
and real datasets, emphasizing the advantages of the proposed
approach.

Index Terms—decision support systems, machine learning,
reject option, svm

I. INTRODUCTION

Decision support systems are becoming ubiquitous in many
human activities, most notably in finance and medicine. Au-
tomatic models are being developed to imitate, as closely as
possible, the usual human decision [1]. Within this context,
classification is one of the most representative predictive
learning tasks. Classification predicts a categorical value for
a specific data item. The most well studied scenario is when
the class to be predicted can assume only two values—binary
setting. The classifier is developed to partition the feature
space in two regions, discriminating between the two classes.

One of the problems with classifying complex items is that
many items from distinct classes have similar structures in a
feature space, resulting in a setting with overlapping classes.
The automation of decisions in this region leads invariably
to many wrong predictions. On the other hand, and although
items in the historical data are labelled only as ‘good’ or
‘bad’, the deployment of a decision support system in many
environments has the opportunity to label critical items for
manual revision, instead of trying to automatically classify ev-
ery and each item. The system automates only those decisions
which can be reliably predicted, labelling the critical ones
for a human expert to analyse. Therefore, the development of
tripartite classifiers, with a third output class, the reject class,
in-between the good and bad classes, is attractive.

II. PROBLEM STATEMENT AND STANDARD SOLUTIONS

Predictive modelling tries to find good rules (models) for
guessing (predicting) the values of one or more variables (tar-
get) in a dataset from the values of other variables. Our target
can assume only two values, represented by ‘good’ and ‘bad’

classes. When in possession of a “complex” dataset, a simple
separator is bound to misclassify some points. Two types
of errors are possible, ‘false positives’ and ‘false negatives’.
The construction (training) of a model can be conducted to
optimise some adopted measure of business performance, be
it profit, loss, volume of acquisitions, market share, etc, by
giving appropriate weights to the two types of errors. When
the weights of the two types of errors are heavily asymmetric,
the boundary between the two classes will be pushed near
values where the most costly error seldom happens.

This fact suggests a simple procedure to construct a three-
class output classifier: training a first binary classifier with a
set of weights heavily penalising the false negative errors, we
expect that when this classifier predicts an item as negative,
it will be truly negative. Likewise, training a second binary
classifier with a set of weights heavily penalising the false
positive errors, we expect that when this classifier predicts
an item as positive, it will be truly positive. When a item is
predicted as positive by the first classifier and negative by the
second, it will be labelled for review. This setting is illustrated
in Figure 1. A problem arises when an item is predicted

(a) Overlapping regions. (b) Typical separator lines, obtained
with two independent binary classi-
fiers.

Fig. 1. Illustrative setting with overlap classes.

as positive by the first classifier and negative by the second
classifier as in Figure 2(a). That can happen because the two
separator lines intersect each other. A convenient workaround
is then to avoid this problematic state by imposing that the
two boundaries of the classifiers do not intersect, Figure 2(b).

Before delving into the proposed method, it is worth dis-
cussing the simple solution of using a single classifier. If more



(a) Intersecting separating lines. (b) Non-intersecting separating
lines.

Fig. 2. Potential discriminative boundaries.

than just discriminating between the two classes, the model to
use yields a posterior probability for each target class, then two
cutoffs can be defined on this value. All items with predicted
probability of belonging to class C−1 less than a low threshold
are labelled as C+1, items with predicted probability of belong-
ing to class C−1 higher than a high threshold are labelled as
C−1, items with predicted probability of belonging to class C−1

in-between the low and high threshold are labelled for review.
Two issues were identified with this approach. First, we need
to estimate the probability of each class, which is by itself
a problem harder than the problem of discriminating classes.
Second, the estimation of the two cutoffs is not straightforward
nor can be easily fitted in standard frameworks. The design
of classifiers with reject option can be systematised in three
different approaches:

• the design of two, independent, classifiers. A first clas-
sifier is trained to output C−1 only when the probability
of C−1 is high and a second classifier trained to output
C+1 only when the probability of C+1 is high. The
simplicity of this strategy has the weakness of producing
intersecting boundaries, leading to regions with a non-
logical decision.

• the design of a single, standard binary classifier. This
approach already provides non-intersecting boundaries.
If the classifier provides some approximation to the a
posterior class probabilities, then a pattern is rejected if
the maximum of the two posterior probabilities is lower
than a given threshold. If the classifier does not provide
probabilistic outputs, then a rejection threshold targeted to
the particular classifier is used. For example, the rejection
techniques proposed with support vector machines consist
in rejecting patterns those distance from the optimal sep-
arating hyperplane is lower than a predefined threshold.
The rejection region is determined after the training of
the classifier, by defining appropriate threshold values on
the output of the classifier.

• the design of a single classifier with embedded reject
option. This approach is consisted in the design of algo-
rithms specifically adapted for this kind of problems [2],
[3].

III. AN ORDINAL DATA APPROACH FOR DETECTING
REJECT REGIONS

The rejection method to be proposed is an extension of a
method already proposed in the literature but for the classifica-
tion of ordinal data. Therefore, and for completeness, we start
by reviewing the data replication method; next, we present the
novel aspects introduced in this article.

A. The Data Replication Method for Ordinal Data

The data replication method for ordinal data can be framed
under the single binary classifier reduction (SBC), an approach
for solving multiclass problems via binary classification re-
lying on a single, standard binary classifier. SBC reductions
can be obtained by embedding the original problem in a
higher-dimensional space consisting of the original features,
as well as one or more extension features. This embedding
is implemented by replicating the training set points so that
a copy of the original point is concatenated with each of the
extension features’ vectors. The binary labels of the replicated
points are set to maintain a particular structure in the extended
space. This construction results in an instance of an artificial
binary problem, which is fed to a single binary learning
algorithm. To classify a new point, the point is replicated and
extended similarly and the resulting replicas are fed to the
binary classifier, which generates a number of signals, one for
each replica. The class is determined as a function of these
signals [4].

To present the data replication method, assume that exam-
ples in a classification problem come from one of K ordered
classes, labelled from C1 to CK , corresponding to their natural
order. Consider the training set {x(k)

i }, where k = 1, . . . ,K
denotes the class number, i = 1, . . . , `k is the index within
each class, and x(k)

i ∈ Rp, with p the dimension of the feature
space.

Let us consider a very simplified toy example with just three
classes, as depicted in Figure 3(a). Here, the task is to find
two parallel hyperplanes, the first one discriminating class C1
against classes {C2, C3} and the second hyperplane discrim-
inating classes {C1, C2} against class C3. These hyperplanes
will correspond to the solution of two binary classification
problems but with the additional constraint of parallelism.
The data replication method suggests solving both problems
simultaneously in an augmented feature space [5].

In the toy example, using a transformation from the R2

initial feature-space to a R3 feature space, replicate each
original point, according to the rule (see Figure 3(b)):

x ∈ R2↗
↘

[ x
h ] ∈ R3

[ x
0 ] ∈ R3

, where h = const ∈ R+

Observe that any two points created from the same original
point differ only in the extension feature. Define now a binary
training set in the new (higher dimensional) space according



(a) Original dataset in R2, K = 3. (b) Dataset in R3, with samples
replicated (h = 1).

(c) Transformation into a binary
classification problem.

(d) Linear solution to the binary
problem.

(e) Linear solution in the original
dataset.

Fig. 3. Data replication model in a toy example (from [5]).

to (see Figure 3(c)):[
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]
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In this step we are defining the two binary problems as a single
binary problem in the augmented feature space. A linear two-
class classifier can now be applied on the extended dataset,
yielding a hyperplane separating the two classes, see Figure
3(d). The intersection of this hyperplane with each of the
subspace replicas can be used to derive the boundaries in the
original dataset, as illustrated in Figure 3(e).

To predict the class of an unseen example, classify both
replicas of the example in the extended dataset with the binary
classifier. From the sequence of binary labels one can infer the
predicted label on the original ordinal classes

C1, C1 =⇒ C1 C2, C1 =⇒ C2 C2, C2 =⇒ C3

Note that only three sequences are possible [5]. The gener-
alisation for any problem in Rp, with K ordinal classes and
nonlinear boundaries can be found in [5].

Summing up, (K − 1) replicas in a Rp+K−2 dimensional
space are used to train a binary classifier. The target class of an

Replica # points from C1 points from C2
1 −1; C` +1; Ch

2 −1; Ch +1; C`

TABLE I
LABELS AND COSTS (C` AND Ch REPRESENT A LOW AND A HIGH COST

VALUE, RESPECTIVELY) FOR POINTS IN DIFFERENT REPLICAS IN THE
EXTENDED DATASET.

unseen example can be obtained by adding one to the number
of C2 labels in the sequence of binary labels resulting from
the classification of the (K − 1) replicas of the example.

B. The Data Replication Method for Detecting Reject Regions

The scenario of designing a classifier with reject option
shares many characteristics with the classification of ordinal
data. It is also reasonable to assume for the reject option
scenario that the three output classes are naturally ordered as
C1, Creject, C2. As the intersection point of the two boundaries
would indicate an example with the three classes equally
probable—one would be equally uncertain between assigning
C1 or Creject and between assigning Creject or C2—it is plau-
sible to adopt a strategy imposing non-intersecting boundaries.
In fact, as reviewed in Section II, methods have been proposed
with exactly such assumption. In the scenario of designing a
classifier with reject option, we are interested on finding two
boundaries: a boundary discriminating C1 from {Creject, C2}
and a boundary discriminating {C1, Creject} from C2.

We proceed exactly as in the data replication method for
ordinal data. We start by transforming the data from the initial
space to an extended space, replicating the data, according to
the rule (see Figure 4(b)):

x ∈ Rd↗
↘

[ x
h ] ∈ Rd+1

[ x
0 ] ∈ Rd+1

, where h = const ∈ R+

If we design a binary classifier on the extended training data,
without further considerations, one would obtain the same
classification boundary in both data replicas. Therefore, we
modify the misclassification cost of the observations according
to the data replica they belong to. In the first replica (the
extension feature assumes the value zero), we will discriminate
C1 from {Creject, C2}; therefore we give higher costs to obser-
vations belonging to class C2 than to observations belonging to
class C1. This will bias the boundary towards the minimisation
of errors in C2. In the second replica (the extension feature
assumes the value h), we will discriminate {C1, Creject} from
C2; therefore we give higher costs to observations belonging to
class C1 than to observations belonging to class C2. This will
bias the boundary towards the minimisation of errors in C1.
In Figure 4(c) this procedure is illustrated by filling the marks
of the observations with higher costs. Table I summarises this
procedure.

A two-class classifier can now be applied on the extended
dataset, yielding a boundary separating the two classes, see
Figure 4(d). The intersection of this boundary with each of



the subspace replicas can be used to derive the boundaries in
the original dataset, as illustrated in Figure 4(e).

(a) Original binary dataset in R2. (b) Dataset in R3, with samples
replicated (h = 1).

(c) Binary problem in R3, with
filled points representing observa-
tions with higher cost of misclassi-
fication.

(d) Solution to the binary problem
in R3.

(e) Solution with reject region in the
original dataset.

Fig. 4. Proposed reject option model in a toy example.

Summing up, with a proper choice of costs, the data replica-
tion method can be used to learn a reject region, defined by two
non-intersecting boundaries. Note that the reject region is opti-
mised during training and not heuristically defined afterwards.
Nonlinear (and non-intersecting) boundaries are treated exactly
as the ordinal data scenario. Likewise, prediction follows the
same rationale.

1) Selecting the Misclassification Costs: In the reject option
scheme, one desires to obtain a minimum error while minimis-
ing the number of rejected cases. However, when the number
of rejected cases decreases the classification error increases,
and to decrease the classification error one typically has to
increase the reject region. The right balance between these
two conflicting goals depends on the relation of the associated
costs.

Let C(k)
i,q represent the cost of erring a point xi from class

k in data replica q (or, equivalently, by hyperplane q). Points
from class C1 misclassified by the hyperplane 1 (wtx+b1 = 0)
but correctly classified by the second hyperplane (wtx + b2 =
0) incur in a loss C(1)

i,1 ; points from class C1 misclassified by

both hyperplanes incur in a loss C(1)
i,1 +C

(1)
i,2 . Likewise, points

from class C2 misclassified by the hyperplane 2 (wtx+b2 = 0)
but correctly classified by the first hyperplane (wtx + b1 = 0)
incur in a loss C(2)

i,2 ; points from class C2 misclassified by
both hyperplanes incur in a loss C(2)

i,1 + C
(2)
i,2 . The resulting

loss matrix is given by

predicted
C1 Creject C2

true C1 0 C
(1)
i,1 C

(1)
i,1 + C

(1)
i,2

C2 C
(2)
i,1 + C

(2)
i,2 C

(2)
i,2 0

The typical adoption of the same cost for erring and rejecting
on the two classes leads to the following simplified loss matrix:

predicted
C1 Creject C2

true C1 0 Clow Chigh

C2 Chigh Clow 0

Therefore, Creject = Clow

Chigh
= wr is the cost of rejecting

(normalised by the cost of erring). The data replication method
with reject option tries to minimizes the empirical risk wrR+
E, where R accounts for the rejection rate and E for the
misclassification rate.

2) Prediction: To predict the class of an unseen example,
classify both replicas of the example in the extended dataset
with the binary classifier. From the sequence of binary labels
one can infer the predicted label on the original ordinal classes

C1, C1 =⇒ C1 C2, C1 =⇒ Creject C2, C2 =⇒ C2

IV. EXPERIMENTAL RESULTS

The aim of our experimental study is to compare the per-
formance of the rejoSVM algorithm with standard approaches
described in Section II.

The performance of the classification methods were as-
sessed over two datasets. The first was synthetically generated;
the second dataset includes real data from a medical applica-
tion.

As in [5], for the synthetic dataset, we began by gener-
ating 400 example points x = [x1 x2]t in the unit square
[0, 1] × [0, 1] ⊂ R2 according to a uniform distribution.
Then, we assigned to each example x a class y ∈ {−1,+1}
corresponding to

(b−2, b−1, b0, b1) = (−∞;−0.5; 0.25; +∞)

ε1 ∼ N(0, 0.1252)
α = 10(x1 − 0.5)(x2 − 0.5)

t = min
r∈{−1,0,+1}

{r : br−1 < α+ ε1 < br}

ε2 ∼ Uniform(b−1, b0)

y =


t t 6= 0
+1 t = 0 ∧ ε2 < α

−1 t = 0 ∧ ε2 > α

(2)

This distribution creates two plateau uniformly distributed and
a transition zone of linearly decreasing probability, delimited
by hyperbolic boundaries.



The second dataset encompassing 960 observations was
taken from previous works [1] and expresses the aesthetic
evaluation of Breast Cancer Conservative Treatment. For each
patient submitted to BCCT, 30 measurements were recorded,
capturing visible skin alterations or changes in breast volume
or shape. The aesthetic outcome of the treatment for each
and every patient was classified in one of the four categories:
Excellent, Good, Fair and Poor. For the purposed of this work,
the multiclass problem was transformed into a binary one, by
aggregated Excellent and Good in one class, and the Fair and
Poor cases in another class.

We randomly split each dataset into training and test sets,
with 5% and 95% of the data, respectively. The splitting of
the data into training and test sets was repeated 100 times in
order to obtain more stable results for accuracy by averaging
and also to assess the variability of this measure. The best
parameterization of each model was found by ‘grid-search’,
based on a 5-fold cross validation scheme conducted on the
training set. Finally, the error of the model was estimated on
the test set.

The performance of a classifier with reject option can be
represented by the classification accuracy achieved for any
value of the reject rate (the so-called Accuracy-Reject curve).
The trade-off between errors and rejections depends on the
cost of a rejection wr. This implies that different points of the
A-R curve correspond to different values of wr. We considered
values of wr less than 0.5, as above this value it is preferable
to just try to guess randomly.

Figure 5 summarises the results obtained for all three
methods on the datasets. A first main assertion is that rejoSVM

(a) Synthetic dataset.

(b) BCCT dataset.

Fig. 5. The A-R curves for the three datasets.

performs better than the simpler solution based on a single
classifier. In all experiments, the performance of rejoSVM
was superior to the single classifier approach, over the full

range of values for wr. Comparing the rejoSVM with the two
independent classifiers approach, neither of the two techniques
outperformed the other one. Indeed, both techniques exhib-
ited almost the same behaviour over the two datasets. It is
important to emphasise that rejoSVM has the advantage of
simplicity, using a single direction for both boundaries, and
interpretability.

Despite our method does not clearly outperform standard
approaches, some considerations should be made concerned
to our proposal: 1) the capability to detect reject regions with
a single standard binary classifier; 2) it does not need the
addition of any confidence level, or thresholds, to define the
trust regions; and 3) it does not generate ambiguity regions
as the two classifier can produce as it was presented in
Figure 2(a). A feature of our proposal is a straightforward
extension to multiclass classification which will be developed
in further studies.

V. CONCLUSION

In this paper, we proposed an extension of the data repli-
cation method [5] that directly embeds reject option. This
extension was derived by taken a new perspective of the
classification with reject option problem, viewing the three
output classes as naturally ordered. A pair of non-intersecting
boundaries delimits the rejection region provided by our
model. The same holds for the rejection region provided by
the commonly used rejection technique. Our proposal has the
advantages of using a standard binary classifier and embedding
the design of the reject region during the training process.
Moreover, the method allows a flexible definition of the
position and orientation of the boundaries, which can change
for different values of the cost of rejections wr. Finally, further
studies will be made on the extension of this work applied
to a multiclass reject problem and the mapping to additional
learning frameworks, such as neural networks. We also plan
to conduct a complete comparison study with state of the art
methods.
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